Granger causality with signal-dependent noise
نویسندگان
چکیده
منابع مشابه
Granger causality with signal-dependent noise
It is generally believed that the noise variance in in vivo neuronal data exhibits time-varying volatility, particularly signal-dependent noise. Despite a widely used and powerful tool to detect causal influences in various data sources, Granger causality has not been well tailored for time-varying volatility models. In this technical note, a unified treatment of the causal influences in both m...
متن کاملGoal-dependent modulation of effective connectivity detected by Granger causality with signal-dependent noise
Here we present a detailed approach on how to analyze fMRI data, using Granger causality with signal dependent noise. The model stability of signal dependent noise is discussed which serves as a constraint when we fitted the model parameters. We then introduced a strict procedure to regress out all artifacts due to head movements. The processed data enables us to clearly demonstrate that noise ...
متن کاملAttention-Dependent Modulation of Cortical Taste Circuits Revealed by Granger Causality with Signal-Dependent Noise
We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invaria...
متن کاملEffect of measurement noise on Granger causality.
Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is important to understand the effect of such noise on estimating causal relations between such signals. A primary tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal using a bivariate autoregressive (AR) process. In this paper, we grea...
متن کاملGranger causality
Granger causality is a statistical concept of causality that is based on prediction. According to Granger causality, if a signal X1 "Granger-causes" (or "G-causes") a signal X2, then past values of X1 should contain information that helps predict X2 above and beyond the information contained in past values of X2 alone. Its mathematical formulation is based on linear regression modeling of stoch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2011
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2011.05.054